If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+101x+50=0
a = 2; b = 101; c = +50;
Δ = b2-4ac
Δ = 1012-4·2·50
Δ = 9801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9801}=99$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(101)-99}{2*2}=\frac{-200}{4} =-50 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(101)+99}{2*2}=\frac{-2}{4} =-1/2 $
| 6.7g+9=2.7g+21 | | 2x^2+53x+50=0 | | p=60×45 | | x2(x+5)=−24 | | 5/8b-9-1/4b=3 | | 2(-x-5)-x=x-6 | | -(3-4y)=2(y+2) | | 12x-10x=100 | | 3(x-1)+2x=2x-9 | | 2(x-3)-5x=-2x+4 | | 2x+53x-3=5x+9 | | 8x-5x+155=8x+10 | | 2+6v-2=-12 | | 2-2t=2 | | -5(8x+5)=5+3x=2 | | 29=+4+15x | | |3•(x-2)|+2=20 | | 4n=52-8n | | 12x-2x+56=12x+40 | | 2x=-×+9 | | 29=-4+15x | | 1/2(2+a)=3a+4/3^(2) | | 3(x+5)+3x+1=34 | | 3(x+5)+3x+1=-34 | | 6x+10=7x+7 | | 7z+5=(-9) | | 2(3x-5)+3x+3=20 | | 3(2x+2)-x-2=39 | | -9y+24=-6y+-3 | | 13=8x+3-3 | | -7z+5=-14 | | 49x-14=49x+3 |